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[Abstract]  

A well-posed physics-based compact model for a three-terminal Silicon-Oxide-Nitride-Oxide-

Silicon (SONOS) synaptic circuit element is presented for use by neuromorphic circuit/system 

engineers. Based on Technology Computer Aided Design (TCAD) simulations of a SONOS 

device, the model contains a non-volatile memristor with the state variable QM representing the 

memristor charge under the gate of the three-terminal element. By incorporating the exponential 

dependence of the memristance on QM and the applied bias V for the gate, the compact model 

agrees quantitatively with the results from TCAD simulations as well as experimental 

measurements for the drain current. The compact model was implemented through VerilogA in 

the circuit simulation package Cadence Spectre, and reproduced the experimental training 

behavior for the source-drain conductance of a SONOS device after applying writing pulses 

ranging from -12V to +11V, with an accuracy higher than 90%. 

 

Improvements in computing performance and efficiency recently opened up opportunities1 in 

artificial intelligence (AI), represented by the seminal work of Alex Krizhevsky et al.2 in 2012 

where graphic processing units (GPUs) combined with big data excelled on an image 

classification task (Top-5 error rate of 15.3 % achieved by artificial neural networks versus 
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26.2 % from the runner-up algorithms). This achievement reignited the attention for deep neural 

networks dating back to the 1980’s3, 4, in particular for convolutional neural networks (CNN). 

Further efforts to optimize computing hardware are being actively pursued, such as using field 

programmable gate arrays (FPGAs) and application-specific integrated circuits (ASICs)5, 6, 

including the tensor processing units (TPUs)7, 8 developed by Google and system on a chip (SoC) 

scale AI-accelerators used in mobile phones. This recent progress in computing hardware is still 

bound to CMOS technology, where the von Neumann bottleneck9 limits speed and power 

efficiency. In-memory analog computing based on Ohm’s and Kirchhoff’s Laws10-12, utilizing 

non-volatile-memories (NVMs), such as resistive random access memory (RRAM)13-15, phase 

change memory (PCM)16, 17 and Flash memory,18-21  is a promising route to eliminate the von 

Neumann bottleneck and implement neuromorphic computing circuits for future AI systems22-26. 

  Here we present a dynamical compact model for three-terminal SONOS (Silicon-Oxide-

Nitride-Oxide-Silicon) synaptic circuit elements. Three-terminal memory devices such as 

floating gate (FG) or SONOS Flash memories have a long history for manufacturable data 

storage applications, but their compact models have relied on static MOSFET behavior27-29. 

Moreover, a significant number of three-terminal synaptic devices are now being reported with 

various material systems30-32, but most publications describe experimental characterization 

without supplying a compact model33, so there exists a significant gap between the device 

community and circuit designers. Our work addresses this gap by constructing a well-posed 

compact model for three-terminal synaptic circuit elements34-36, beginning with the 

technologically mature SONOS device, which is a staple for NAND Flash memory products37-40. 

In this work, we utilized Technology Computer Aided Design (TCAD) physics-based 

calculations within Synopsys Sentaurus to simulate the physics of a device, and identified a key 

state variable QM, the amount of charge in the SONOS trap-layer, to guide us in constructing a 

compact model. Subsequently, we validated the model through a circuit simulation using 

Cadence Spectre to compare with the experimentally measured behavior of source-drain current 

after applying a wide range of voltage pulse amplitudes on the gate of a SONOS device. The use 

of both physics-based simulations and experimental data to identify the state variables and 

calibrate the model was crucial, since the critical state variable QM is extremely difficult to 

measure experimentally (see the Supplementary Video). 



                                                                                                                                           
 

 

Figure 1. (a) The equivalent circuit diagram for a three-terminal SONOS synaptic circuit element based on physical 

state variables QM and Q. The state variable QM is the total amount of charge that has passed through an effective 

memristor M, equal to the charge on the series capacitor CM (the branch on the left), and controls the slow dynamics. 

The memristance is a function of both the state variable QM and the applied voltage, vG -VT -vM, with a strong 

nonlinearity. The parallel branch on the right, composed of a series resistor (R) and capacitor (C), is responsible for 

the short-term dynamics with a state variable Q, which represents the typical switching behavior of a MOSFET. For 

simplicity, the capacitor C is described as a linear capacitor, which holds when vG -VT>0, where the influence of charge 

depletion is negligible. R describes an effective resistance including the contact resistance of the gate electrode, the 

scattering by the ionized impurities in the depletion region, etc. The conductances and currents through the channel 

of the SONOS device are represented by variable resistors with identical resistances RCH, and depend on the two state 

variables Q and QM. (b) The geometry of a SONOS device in TCAD simulations and experiments (Ref.[33]). Color 

plot shows the doping concentration of 2-D cross section perpendicular to the gate width. Inset shows three exemplary 

programmed states with color plots of trapped electron concentration in Si3N4 layer. 

  Figure 1 (a) depicts the equivalent circuit diagram for the well-posed compact model of a three-

terminal SONOS synaptic circuit element34-36 for neuromorphic applications, which consists of 

three components. The first is found on the left vertical branch, composed of a series capacitor 

CM and an extended memristor41 M, defined as  

      𝑀𝑀 = f(𝑄𝑄𝑀𝑀,𝑉𝑉) and          (1a) 

     𝑑𝑑𝑄𝑄𝑀𝑀
𝑑𝑑𝑑𝑑

= 𝐼𝐼𝑀𝑀 = 𝑔𝑔(𝑄𝑄𝑀𝑀,𝑉𝑉).         (1b) 

where we are not directly interested in the current 𝐼𝐼𝑀𝑀 through the memristor, which is in general 

too small to be measured experimentally, but rather how the memristor charge controls the long- 

term SONOS dynamics for synaptic weight modulation or non-volatile memory through the time 

dependence 



                                                                                                                                           
𝑄𝑄𝑀𝑀 = 𝐶𝐶𝑀𝑀(𝑣𝑣𝐺𝐺 − 𝑉𝑉𝑇𝑇 − 𝑣𝑣𝑀𝑀)�1 − 𝑒𝑒−𝑑𝑑/(𝑀𝑀𝐶𝐶𝑀𝑀)�,            (2)  

which is discussed further below. The second vertical branch on the right has a series resistor R 

and a capacitor C, which control the short-term dynamics represented as 

                       𝑄𝑄 = 𝐶𝐶(𝑣𝑣𝐺𝐺 − 𝑉𝑉𝑇𝑇 − 𝑣𝑣𝑀𝑀)�1 − 𝑒𝑒−𝑑𝑑/(𝑅𝑅𝐶𝐶)�,                                           (3)  

and in turn the drain current, iD is 

                       𝑖𝑖𝐷𝐷 = 𝜇𝜇𝑣𝑣𝐷𝐷
1
𝐿𝐿2
𝑄𝑄                                                                (4)  

Equation (4) is essentially quasi-static42, 43, without an explicit time dependence  

𝑖𝑖𝐷𝐷 = 𝜇𝜇𝑣𝑣𝐷𝐷
1
𝐿𝐿2
𝐶𝐶(𝑣𝑣𝐺𝐺 − 𝑉𝑉𝑇𝑇 − 𝑣𝑣𝑀𝑀) = 𝜇𝜇𝑣𝑣𝐷𝐷

𝑊𝑊
𝐿𝐿
𝐶𝐶𝑜𝑜𝑜𝑜(𝑣𝑣𝐺𝐺 − 𝑉𝑉𝑇𝑇 − 𝑣𝑣𝑀𝑀)                          (5) 

due to the small time constant τ=RC≪1ns. We performed circuit simulations based on a SONOS 

device with W=1.2 μm, L=7 μm, μ=350 cm2V-1s-1, and C=26 fF18, 33 as shown in Fig.1 (b) 

combined with R=108 Ω, chosen to manage the simulation speed with a time constant τ=2.6 μs, 

which permits the use of a timestep as large as 1ns in Cadence Spectre to examine both short and 

long term dynamics. For most practical circuit simulations, the short-term dynamics can be 

safely eliminated by making Q a parameter instead of a state variable18, as discussed in Section 2 

of the Supplementary Information. The last component comprises two identical variable 

resistors, derived from vD/iD as  

𝑅𝑅𝐶𝐶𝐶𝐶 = �𝜇𝜇 1
2𝐿𝐿2

(𝑄𝑄 − 𝜒𝜒𝑄𝑄𝑀𝑀)�
−1

,                                                   (6) 

where χ stands for the percentage of QM contributed by the silicon channel. The memristor 

conductance is a function of the 𝑄𝑄𝑀𝑀 history as described below.  



                                                                                                                                           

   

Figure 2. Synaptic weight dynamics modeling of a SONOS device with a memristor and two capacitors. The 

amounts of charge on the capacitors and the corresponding band diagrams are taken from TCAD simulations with a 

bias of V= 8 V as an example. Two distinct points of time at t= 1 μs (left) and t= 200 ms (right) after the bias is 

applied are shown. Each ‘-’ symbol represents roughly 2.5×1012 electrons per cm2 (e-/cm2) (a) Equivalent circuit 

diagrams of a SONOS layer stack with two terminals: the gate and silicon channel (source and drain are grounded). 

A memristor M and a capacitor CM account for the synaptic weight modulation based on the state variable QM. When 

t= 200 ms, QM increased so that Q - χQM as well as the synaptic weight (conductance across source and drain) was 

reduced. (b) Schematic physical structure of the SONOS stack. The thicknesses of the ONO layers are 3 nm, 8 nm, 

and 4 nm, respectively, whereas the silicon channel and gate are much larger. (c) Corresponding band diagram 

across the SONOS layer at t= 1 μs compared to t= 200 ms, which exhibits a thicker effective tunneling barrier (5 

nm) that is larger than the tunneling oxide (3 nm). The memristor M with the state variable QM equivalently reflects 

the varying tunneling barrier thickness.  
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We performed TCAD simulations to determine the quantitative dynamics of the state variables 

QM and Q, representing charge transport via tunneling and electron drift-diffusion44, because they 

are not easily experimentally accessible. A memristor circuit element was necessary to describe 

the dynamics of QM, whereas a linear R-C circuit was suitable for Q. The results in Fig. 2 

provided the information used to derive the compact model in Fig. 1. To focus on the dynamics 

of synaptic weight modulation, the drain and the source were grounded and denoted as ‘Si’, 

which eliminated the channel current. A bias of V= 8V was applied to the gate at t= 0, with Fig. 2 

representing two times after bias application, t= 1 μs and t= 200 ms. The resistor in the short-

term branch (R) in Fig. 1 was not included because C was fully charged within one microsecond 

in the TCAD simulations. The amount of charge under 8 V bias at t= 1 μs (left, Fig. 1 (a)) was 

Q= 17.5×1012 e-/cm2, corresponding to 2.8 μC/cm2, which shows good agreement with the 

expected value of 2.5 μC/cm2 calculated from 8 V on a capacitor with 0.31 μF/cm2 (3 nm SiO2, 8 

nm Si3N4, and 4 nm SiO2) visualized schematically in Fig. 2 (b). The area density of electrons 

was used as the unit for Q and QM for more intuitive analysis in this paper. A slightly larger 

amount of charge compared to the expected capacitor value is attributed to the negative threshold 

voltage VT = -0.01V and nonlinear Q-V curve near the depletion region (𝑣𝑣𝐺𝐺 ≅ 𝑉𝑉𝑇𝑇) of a MOSFET. 

The corresponding band diagram across the material stack is shown in Fig. 2 (c). The trap layer 

(Si3N4) remains electrostatically neutral until t= 1 μs with QM= 0, and provides a tunneling 

barrier thickness of 3 nm due to the 9 eV forbidden gap of SiO2. After allowing enough time for 

tunneling, at t= 200 ms (Fig. 2 right column), QM= 5.8×1012 e-/cm2 and QG= 20×1012 h+/cm2, 

hence Q - χQM= 14.2×1012 e-/cm2 because of charge neutrality (QG= QM + Q - χQM). 

Consequently, the synaptic weight of the SONOS decreased based on the net charge changing 

from 17.5×1012 e-/cm2 at t= 1 μs to 14.2×1012 e-/cm2 at t= 200 ms. In other words, 57% of the 

increased QM (0→5.8×1012 e-/cm2) is contributed by the electron charge on C (= Q - χQM : 

17.5×1012 e-/cm2→14.2×1012 e-/cm2), realizing the synaptic weight depression. Although the 

tunneled charge is 5.8×1012 e-/cm2, intuitively implying Δ(Q - χQM)= -5.8×1012 e-/cm2, the loss 

of charge on C is spontaneously complemented by the gate electrode (QG: 17.5×1012 

h+/cm2→20×1012 h+/cm2) due to the electrostatic force from the trapped charge located at the 

middle of dielectric stack (O-N-O). The Supplementary Video provides a dynamic circuit 

illustration of this mechanism and the relevant discussion on χ follows later (Fig. 6). The 



                                                                                                                                           
underlying physics of the memristor in our compact model is revealed in the band diagram at t= 

200 ms (right panel of Fig. 2 (c)). The slightly lifted conduction band edge (or electrostatic 

potential) due to the injected negative space charge (trapped electrons) alters the tunneling 

thickness so that an electron, from the conduction band edge of silicon interfaced with the SiO2 

tunneling oxide, encounters a thicker tunneling barrier of 5 nm compared to 3 nm at t= 1 μs 

when QM= 0. Consequently, the tunneling current decreases, i.e., [d𝑄𝑄𝑀𝑀/dt]𝑄𝑄𝑀𝑀=5.8×1012 <

[d𝑄𝑄𝑀𝑀/dt]𝑄𝑄𝑀𝑀=0. Figure 2 presents results at two discrete times, but the memristance changed 

smoothly and continuously with the state variable QM. 



                                                                                                                                           

  

Figure 3. Physics model (TCAD) simulation results of a SONOS device and corresponding compact model. (a and 

b, positive and negative gate biases, respectively) In (a), the state variable QM increases with time and saturates at 

QM= QM.max= 8×1012 e-/cm2, which is defined by the trap concentration (1019 cm-3) chosen for the 8 nm-thick Si3N4 

layer. (c) Logarithmic scale plots of QM for V> 0 (or QM,max- QM for V< 0), conveying the identical information of 

(a) and (b), but emphasizing the nonlinearity of the response. The decaying slopes (=-1/τ) with respect to time 

show that the characteristic time is not constant. (d and e) Dynamic route maps (DRMs) extracted from (a) and (b), 

respectively. The nearly linear relations between log(dQM /dt) and QM demonstrate that the memristance depends  

exponentially on QM. The compact model linear approximations to the DRMs are denoted with dotted lines. The 
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eccentric behaviors observed for 9 V with QM> 5×1012 e-/cm2 and -8 V with QM< 1012 e-/cm2 are due to QM 

approaching QM,max= 8×1012 e-/cm2 and QM,min = 0, respectively. (f) Memristance as a function of voltage.  Upward 

and downward triangles represent the memristance values at two extremes, QM= 0 and QM= 8×1012 e-/cm2, 

respectively, from (d and e). The overall trend of the memristance M versus QM and V exhibits the dependence on 

the state variable (governed by a parameter γ) and a strong nonlinearity with V (governed by a parameter β) in Eq. 

(8). 

Figures 3 (a) and (b) show the simulation results of QM as a function of time under constant 

biases: +9, +8, and +7 V in (a) and -8, -7, -6, and -5 V in (b). The dynamics are qualitatively 

reminiscent of an R-C circuit, where the initial current, it=0, is equal to V/R and Q increases 

inverse-exponentially until it is saturated at Q=CV, but is quantitatively different.  For example, 

the two curves with +9 V and +8 V in Fig. 3 (a) show that +9/[dQM/dt]t=0 from the former is not 

identical to +8/[dQM/dt]t=0 from the latter, immediately identified by the slope of the curves at 

t=0. Therefore, the resistive component in series with the capacitor has a voltage dependence. 

Secondly, the slope of the tangent decreases exponentially (not linearly) with QM, which is 

evident from the replotted curves on a log scale in Fig. 3 (c), demonstrating that the resistance is 

also a function of QM, as forecast by Eq. (1).  The y-axis represents QM,max – QM for V>0 and QM 

for V<0, because -t/(RC) is equal to ln(CV-Q)+D for V>0 and ln(Q-CV)+D for V<0, where D is a 

constant (see Eq. (S8)). For a usual RC circuit, ln(Q-CV) for V<0 (or ln(CV-Q) for V>0) is a 

linear function of time with a slope -1/ τ, where τ is the time constant (= RC, see Eq. (S5)~(S8) in 

the Supplementary Information for more details). However, the observed results exhibit 

significant nonlinearities for all seven biases, demonstrating that the resistance is a function of 

QM, which is the memristance. The dynamic route maps (DRMs) in Figs. 3 (d) and (e) describe 

the dependence of the dynamics on the state variable. The QM dynamics results obtained from 

our physics simulations were fitted by a M-C circuit as shown by the dotted lines in Figs. 3 (d) 

and (e), with the dynamical equation: 

𝑑𝑑𝑄𝑄𝑀𝑀
𝑑𝑑𝑑𝑑

= − 1
𝑀𝑀(𝑄𝑄𝑀𝑀,𝑉𝑉)𝐶𝐶𝑀𝑀

𝑄𝑄𝑀𝑀 + 𝑉𝑉
𝑀𝑀(𝑄𝑄𝑀𝑀,𝑉𝑉)                                                   (7) 

This equation breaks down when QM approaches the extrema at 0 or QM,max, which both require 

extreme times to reach. As long as the SONOS operation range is limited to intermediate states 

with moderate values of QM, the compact model featuring the exponential correlation between M 

and QM can emulate the behavior with only small errors. The compact model calibrated to an 

experimental SONOS device (Fig. 8) showed that QM was bounded between 20 fC to 60 fC even 



                                                                                                                                           
after many pulses of various magnitudes, because dQM/dt changes exponentially with QM. The 

fitted memristance values at QM=0 and QM= QM,max=8×1012 e-/cm2
 are marked as upward and 

downward triangles, respectively in Fig. 3 (f) for seven different bias points performed in our 

physics simulation. Seven sets of memristance values as a function of QM were interpolated and 

extrapolated to establish the following analytic equation: 

𝑀𝑀(𝑄𝑄𝑀𝑀,𝑉𝑉) = 𝛼𝛼 × 𝛽𝛽10−|𝑉𝑉|�𝛾𝛾 × 𝛿𝛿10−|𝑉𝑉|�
(−1)𝑛𝑛𝑄𝑄𝑀𝑀
8×1012                                          (8) 

where α= 50, β= 70, γ= 50, δ= 25, and n is 0 for V>0 and 1 for V<0. The dependences on V and 

QM are described by β and γ, respectively. Additionally, it can be found that the sensitivity of the 

memristance on QM (slopes of the dotted lines in Figs. 3 (d) and (e)) also exponentially increases 

with V, which is reflected by the fitting parameter δ. Although the curves from the analytic 

equation denoted by lines produce some errors compared to the physics simulation results 

(symbols), it can account for all possible combinations of QM and V so that it can stand alone as a 

circuit element. A discontinuity in M between V= 0- and V= 0+ is observed when QM= QM,max, 

for which the physical mechanism is attributed to a change in the charge tunneling dynamics. 

While a larger QM provides a thicker tunneling barrier in the case of trapping into Si3N4 (V>0), it 

fosters detrapping when V<0 because the electrostatic potential of the trap is higher compared to 

when QM= 0. 

  Figures 4 (a) and (b) reveal the familiar pinched hysteresis loops characteristic of memristors 

with an applied sinusoidal voltage. In the present system, both loops are traversed clock-wise, 

which is different from most familiar memristors that show both clock-wise and counter clock-

wise trajectories depending on the sign of the voltage. Although the IM-V characteristic of in Fig. 

4 (b) appears to be that for a volatile memristor, the expanded view in Fig. 4 (c) shows that there 

are two different slopes at the zero crossing, showing that the memristor is nonvolatile but that 

the states near the zero crossing have a very large resistance compared to those at high voltage 

amplitudes.  Figure 4 (d) shows that there is an avoided zero crossing when there is a capacitor in 

series with the memristor, which would be the case for an experimental measurement of this 

system since the capacitance is intrinsic to the structure.  Blue solid curves in Figs. 4 (a) and (b) 

were obtained by TCAD simulations to verify the feasibility of our compact model. The compact 

model and physics simulation present good agreement, although they have a quantitative 



                                                                                                                                           
mismatch owing to the simple analytical form of Eq. (8) that can be improved at the cost of 

complexity. Red solid curves in Figs. 4 (a) and (b) represent the long-term gate current, IG,0, that 

is the sole way to deduce IM  through experimental measurements. The shape of IG,0 is almost 

identical to IM, but with different magnitudes, approximately half of IM, which is consistent with 

the illustration in the Supplementary Video and justifies the parameter χ ranging from 0 to 1. The 

detailed procedure for extracting the long-term gate current (IG,0) from the total gate current (IG,0 

+ IG,∞) is available in Figure S2. Memristors’ nonideal writing characteristic, so called 

nonlinearity and asymmetry, which is reflected by ‘fading memory effect’45, was also found 

from simulations of our compact model under sinusoidal voltage biases (Figure S3). 

Figure 4. The characteristic of memristor in the branch of long-term dynamics under an AC voltage. (a) Current 

(blue: IM and red: IG,0) as a result of an AC voltage of 8 V and 1 Hz. Dashed-line is IM from the compact model of 

Eq. (7) and (8), whereas solid lines are from physics simulation of Synopsys Sentaurus. (b) Current-voltage 

hysteresis curve of the memristor, IM, and the experimentally observable long-term gate current, IG,0, replotted from 

(a). The trajectories of hysteresis curve are always clockwise, whereas general oxide memristors exhibit bipolar 

trajectories (e.g., clockwise with V>0 and counter-clockwise with V<0). (c) Hysteresis curve of the memristor near 

IM from compact model
IM from physics simulation
IG,0 from physics simulation

(c)                                                    (d)

(a)                                                    (b)



                                                                                                                                           
the zero crossing. (d) Hysteresis curve of a series connection of a memristor and a capacitor near zero crossing, 

which is a magnified view of (b).  

 

 

Figure 5. Facile calibration protocol applicable to general three-terminal synaptic circuit elements by utilizing the 

threshold voltage VT of a MOSFET. The experimentally measured iD after every pulse of vG=-12 V and +11 V of the 

SONOS device from Ref. [33] is employed to illustrate the procedure. (a) Channel current, iD , (with vD- vS= 0.1 V 

and vG= 2.4 V during reading) with time under repeating training pulses of vG= -12 V (left) or vG= +11 V (right) on 

the gate. (b) The one-to-one mapping of the current, iD, versus ΔVT is possible because the iD -vG curve is simply 

shifted on the vG-axis, while the entire shape is negligibly deformed. (c) Based on the conversion relation in (b), ΔVT 

versus time can be obtained. 

(b)

(c)

vG= -12 V vG= +11 V (a)



                                                                                                                                           
 

We next calibrated the compact model extracted from TCAD simulations using experimental 

data from a SONOS device33. Since an accurate compact model requires dynamical information 

from the target, we designed a protocol to extract the state variable from measurements that can 

actually be performed46, as shown in Fig. 5 for a general three-terminal synaptic device30-32, 47, 48. 

For SONOS, the measured channel currents were converted to the change in threshold voltage 

(VT) so that the desired state variable QM could be obtained. Figure 5 (a) shows the channel 

current of a SONOS device potentiated by -12 V and suppressed by +11 V from the work of 

Agarwal et al.33. By utilizing the rigid shape of iD-vG regardless of the shift in VT, ΔVT can be 

deduced from the current based on the measured iD-vG curve at an arbitrary state, as shown in 

Fig. 5 (b), to obtain Fig. 5 (c). 

 



                                                                                                                                           

 

Figure 6. Relationship between VT and QM under various conditions of Si3N4 trap density to obtain QM from the 

experimentally obtained VT data. (a) VT linearly increases by 1 V for every ΔQM= 2.5×1012 e-/cm2. (b) A detailed 

analysis for the case of trap density equal to 1×1019 cm-3. The slope of ‘Q - χQM’ versus V relation is consistent with 

the expected capacitance of the ONO layer (~0.31 μF/cm2), which governs the correlation between ΔVT and χΔQM. 

For a MOSFET, ΔQM= 1.93×1012 e-/cm2 is required to induce ΔVT= 1 V (= [0.31 μF/cm2] / [1.6×10-19 C]) with χ=1 

when the fixed charges exist at the interface between the silicon channel and SiO2. For the SONOS device, for 

which the trapped charge is dominantly in the Si3N4 layer, χ= 0.73 was derived from the simulation results: ΔQM= 

2.65×1012 e-/cm2 for every ΔVT= 1 V. (c) When the trap density increases to 3×1019 cm-3, the trapped charge has a 

narrower distribution, spatially closer to the channel rather than the gate. As a result, Δ(Q - χQM) contributes 77% of 

ΔQM (i.e., , χ= 0.77) and the conversion factor slightly decreased to 2.52×1012 e-/cm2V-1. (d) Further increase to 

10×1019 cm-3 does not create a notable change compared to 3×1019 cm-3 from (c) (i.e., χ= 0.77), hence the 

conversion factor remains as 2.52×1012 e-/cm2V-1. 
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While a simple correlation between the amount of fixed charge (ΔQNOT) at the interface of the 

silicon channel and SiO2 and the shift in threshold voltage (ΔVT) holds from ΔVT= ΔQNOT/C for a 

MOSFET, when it comes to a SONOS device with ΔQM (most charges exist in Si3N4) instead of 

ΔQNOT, the relation becomes ΔVT < ΔQM/C.19, 49 Due to electrostatic equilibration, the trapped 

charge closer to the channel results in the larger ΔVT, mainly dictated by the amount of charge at 

the channel. Likewise, trapped charge closer to the gate eventually draws more charge from the 

gate rather than from the channel (because the gate supplies the charge to the channel, a 

mechanism animated in the Supplementary Video), so that ΔVT is reduced. In order to estimate χ, 

ranging from 0 to 1, for a generalized correlation of ΔVT= χΔQM/C, a series of additional TCAD 

simulations were performed with three different scenarios for the trap concentrations in Si3N4: 

1×1019 cm-3, 3×1019 cm-3 and 10×1019 cm-3. As shown in Fig. 6 (a), all three cases require 

approximately ΔQM= 2.5×1012 e-/cm2 to induce ΔVT= 1 V, hence the resultant χ is calculated to 

be 0.77, because C= 0.31 μF/cm2. For the lowest trap concentration, 1019
 cm-3 (Fig. 6 (b)), a 

slightly larger amount of trapped charge, ΔQM= 2.65×1012 e-/cm2, is required to achieve ΔVT= 1 

V (i.e., χ= 0.73) and the incremental efficiency becomes worse for the larger QM’s (>4×1012 e-

/cm2). This is because of the limited capacity of the trap layer so that for QM> 4×1012 e-/cm2, for 

instance, the trapped charges reside not only near the interface of Si3N4, but also in the bulk 

region of Si3N4, which is closer to the gate and induces a smaller ΔVT. With the higher trap 

concentrations in Si3N4 (3×1019 cm-3 and 10×1019 cm-3) as shown in Figs. 6 (b) and (c), the 

newly trapped electrons always occupy the interface between Si3N4 and the tunneling SiO2 layer, 

so that the efficiency remains the similar with χ= 0.77. Based on the analysis with different trap 

concentration scenarios, a conversion factor of 3×1012 e-/cm2V-1 was chosen to extract QM from 

the experimental measured data of ΔVT in Fig. 5 (c). 



                                                                                                                                           

  

Figure 7. Extracted DRMs and corresponding memristance value maps of the experimental SONOS device in Ref. 

[33]. (a and b) Under both positive and negative biases for depression and potentiation, respectively, a linear 

approximation for log(dQM/dt) versus QM holds reasonably well, consistent with the physics simulation results and 

the compact model. (c) Selected experimental M values (triangles, red is QM=0, blue is QM=QM,max, similar to Fig. 3 

(f)) to build the dotted lines in (a) and (b). The analytical function with a parameter set (α, β, γ, δ)= (70000, 7, 50, 1) 

simultaneously fits both potentiation and depression, but with significant errors possibly due to different physics for 

charge trapping and detrapping. (d) A modified function for M, where the parameters are different for potentiation 

(α-, β-, γ-, δ-)= (106, 2.5, 3000, 1)  and depression (α+, β+, γ+, δ+)= (5500, 9, 900, 1), models the experimental SONOS 

data with negligible error.  

 

Figures 7 (a) and (b) show the resultant DRMs from QM of the experimentally measured 

channel currents versus the number of square writing pulses on the gate33 with seven different 

bias conditions: +11, +10, and +9 V for depression, and -12, -11, 10, and -9 V for potentiation. 

Although the experimental points are noisy compared to those from TCAD simulations, the 

exponentially changing memristance with QM and the nonlinearity with the bias voltage are 

present, similar to our observations from the physics simulations. The triangles (blue for QM= 0 
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and red for QM= QM,max) in Figs. 6 (c) and (d) correspond to the bias voltages in Figs. 6 (a) and 

(b) in a similar manner to Fig. 3 (f). The best fitting parameter set was found to be (α, β, γ, δ)= 

(70000, 7, 50, 1) for the experimental SONOS device compared to (α, β, γ, δ)= (50, 70, 50, 25) 

from the SONOS physics simulations. The significantly larger α represents a much slower 

tunneling by three orders of magnitude for the experimental SONOS devices at V= 10 V, 

implying that the tunneling mass in the TCAD simulations is too low, where the default value 

of Synopys Sentaurus 0.36 m0 was employed. However, the memristance at V=0 (see Fig. 3 (f)) 

shows the inverse trend, such that M= 1.41×1020 Ωcm2 from the TCAD model and M= 

1.98×1013 Ωcm2 from the experimental SONOS data, implying that the tunneling mass may 

need to be smaller than 0.36 m0. This is likely due to the absence of trap-assisted-tunneling 

(TAT) in the TCAD simulations that becomes prominent at smaller V.19  The nonlinearity 

parameter β for the experimental SONOS device is 10 times lower, so that the low bias 

dynamics is faster compared to the simulation model. This may also be caused by the absence 

of TAT through defect states in the forbidden bands of SiO2 and Si3N4, and thus worse 

predictability for low bias cases. This is a known problem for industrial SONOS TCAD models, 

where the pass disturb simulations with V= 7~8 V typically underestimate QM compared to 

fabricated devices19, because defects in SiO2 and Si3N4 are difficult to model. The parameter γ, 

responsible for the sensitivity to QM, was found to be the same for both the physics simulations 

and the experimental data. Lastly, δ, which handles the QM sensitivity of M depending on V, 

was found to be unity, i.e., there was no noticeable dependence of QM on V from the 

experimental SONOS devices. Figure 7 (d) shows the improved fits with distinct parameters for 

potentiation (V<0) and depression (V>0), such that little error remains between the extracted 

memristance values and the analytic equation, as also found in two-terminal compact models46. 

 

 



                                                                                                                                           

 

Figure 8. (a) Cadence Spectre simulation results for SONOS current, iD, versus the accumulated learning time 

compared with the experimental results of Ref. [33] under vG= 2.4 V and vD= 0.1 V for reading the channel current. 

While the measurements of iD for the experimental SONOS devices were conducted after every writing pulse (-9 ~ -

12 V for potentiation, +9 ~ +11 V for depression with 10 μs width), our Cadence Spectre simulations were sampled 

after every 100 μs. Slight errors are attributed to the deviations from the perfectly exponential increase of M with QM 

assumed in our compact model. (b) The corresponding evolution of the state variable QM is available from the 

simulation, which demonstrates the strong correlation between ΔQM and ΔiD. 

 

We deployed the compact model in a commercial circuit simulation package, Cadence Spectre, 

using VerilogA to assess the agreement with the measured drain current (with vD=0.1 V and 

vG=2.4 V during reading)33 after various training pulses (vG) of -12, -11, -10, -9, +9, +10, +11 V 

as shown in Fig. 8 (a). Despite the remarkable simplicity of the compact model, good agreement 

between the simulation and the experiment was confirmed with the accuracy higher than 90 %, 

proving that our compact model captures the essential physics in a simple way. Figure 8 (b) 

shows the corresponding evolution of the key state variable QM, where a strong correlation is 

observed between ΔQM and ΔiD as foreseen by the description of RCH in Eq. (6).  
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  In conclusion, this work presented a well-posed compact model of a SONOS three-terminal 

synaptic circuit element that can be readily utilized by circuit designers for neuromorphic 

computing circuits/systems. This compact model offers the rare combination of good 

predictability stemming from physics-driven state variables and simplicity. The basis of the 

compact model is rooted on the carrier concentration modulation in the conducting channel, so 

that it is readily applicable to other three-terminal synaptic circuit elements besides SONOS 

devices. 
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1. Reduction of RCH under three timescales 

 The full description of RCH in our compact model, which relies on both time constants, RC and 

MCM, can be written as 

𝑅𝑅𝐶𝐶𝐶𝐶 = �𝜇𝜇 1
2𝐿𝐿2

�𝐶𝐶(𝑣𝑣𝐺𝐺 − 𝑉𝑉𝑇𝑇 − 𝑣𝑣𝑀𝑀)�1 − 𝑒𝑒−𝑡𝑡/(𝑅𝑅𝐶𝐶)� − 𝜒𝜒𝐶𝐶𝑀𝑀(𝑣𝑣𝐺𝐺 − 𝑉𝑉𝑇𝑇 − 𝑣𝑣𝑀𝑀)�1 − 𝑒𝑒−𝑡𝑡/(𝑀𝑀𝐶𝐶𝑀𝑀)���
−1

 (S1) 

As an expansion of the quasi-static expression for the drain current of a MOSFET as discussed 

with Eq. (3), Eq. (S1) can be specialized to three time intervals  

𝑅𝑅𝐶𝐶𝐶𝐶 = �𝜇𝜇 1
2𝐿𝐿2

�𝐶𝐶(𝑣𝑣𝐺𝐺 − 𝑉𝑉𝑇𝑇 − 𝑣𝑣𝑀𝑀)�1 − 𝑒𝑒−𝑡𝑡/(𝑅𝑅𝐶𝐶)���
−1

                              when            t < 1 ns  (S2) 

 𝑅𝑅𝐶𝐶𝐶𝐶 = �𝜇𝜇 1
2𝐿𝐿2

�𝐶𝐶(𝑣𝑣𝐺𝐺 − 𝑉𝑉𝑇𝑇 − 𝑣𝑣𝑀𝑀)��
−1

                                                   when 1 ns < t < 1 μs1, 2 (S3)  

 𝑅𝑅𝐶𝐶𝐶𝐶 = �𝜇𝜇 1
2𝐿𝐿2
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−1

 when 1 μs < t (S4) 

due to the significant contrast (~ three orders of magnitude) between RC and MCM. 

Therefore, for practical circuit simulations as a synaptic circuit element (under training), 

one may employ Eq. (S4), where Q becomes a parameter rather than a state variable, so that 

the computing time for simulations can be minimized3.  It also resolves the issue of 

choosing a large resistance such as R=108 Ω to manage the simulation time (timestep as 

large as 1 ns) in our work. 
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2. Derivation of relationship between ln(Qmax-Q) and t for an R-C circuit 
 

The Dynamic Route Map (DRM) as shown in Fig. S2 of a series R-C circuit under a voltage 

source is  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= − 𝑑𝑑
𝑅𝑅𝐶𝐶

+ 𝑉𝑉
𝑅𝑅
                                                             (S5) 

for which the general solution is  

𝑄𝑄 = 𝐴𝐴 ∙ exp �− 𝑡𝑡
𝑅𝑅𝐶𝐶
� + 𝐶𝐶𝑉𝑉  ,                                                 (S6) 

where A depends on the initial condition, Q at t=0.  Eq. (S6) is equivalent to 

− 𝑡𝑡
𝑅𝑅𝐶𝐶

= ln �𝑑𝑑−𝐶𝐶𝑉𝑉
𝐴𝐴
�  ,                                                          (S7) 

which can be rearranged, depending on the sign of V, as 

− 𝑡𝑡
𝑅𝑅𝐶𝐶

= �ln
(𝐶𝐶𝑉𝑉 − 𝑄𝑄) − ln(−𝐴𝐴)    𝑖𝑖𝑖𝑖 𝑉𝑉 > 0

ln(𝑄𝑄 − 𝐶𝐶𝑉𝑉) − ln(𝐴𝐴)       𝑖𝑖𝑖𝑖 𝑉𝑉 < 0                                      (S8) 

where CV is equal to the maximum charge, Qmax, under a bias, V. 

 

Figure S1. (a) A series R-C circuit under a DC voltage bias, (b) DRM of an R-C circuit when V>0 (blue), V<0 

(green), and V<0 with a unipolar capacitor (red) similar to CM of a SONOS. 
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3. Extraction of the long-term gate current (IG,0) from the mixture (IG,0+IG,∞) 

Figure S2. (a) Total gate current (the sum of the long-term, IG,0, and the short-term dynamics, IG,∞ with an 
incremental AC voltage obtained from a TCAD simulation. (b) Magnified view of (c) for 0.2<t<0.22, showing the 
incremental increase of voltage with a ramp-up time of 0.1 ms followed by a holding time of 0.9 ms to separate IG,0 
and IG,∞ . 
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